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Simple modification of the method of cumulants for an evaluation of QELSS data within the' 
error limit of 2~-;; in the case of narrow polymers is suggested. Model calculations of the deviations 
from the exponential decay due to polydispersity are presented, criteria of applicability of the 1st 
and 2nd cumulant fit at a given accuracy are derived and verified experimentally. The required 
agreement between the classical and QELSS diffusion constant is achieved if the QELSS measure­
ments are made at concentrations where the effect of concentration dependence of the diffusion 
constant may be neglected. 

Time resolved light scattering experiments are able to reveal various dynamic pro­
cesses in solution. The technique, often referred to as quasielastic light scattering 
spectroscopy (QELSS), has in recent years become a standard tool used to determine 
diffusion coefficients in polymer solutions. Due to the nature of the QELSS experi­
ment and since the technique lends itself to a high level of computerization. such 
determinations can be done very rapidly. 

One important application of the diffusion coefficients of polymers is to use them 
for sample characterization either by themselves or, preferably, in combination with 
sedimentation data, to determine absolute molar masses according to the Svedberg 
formula. Some years ago we published 1- 3 extensive precision data obtained by 
classical techniques (sedimentation, diffusion, viscosity) which characterized ~ set 
of very sharp polystyrene fractions over a wide range of molar masses. From these 
results it clearly emerged that velocity sedimentation and diffusion can be brought 
to such a perfection that molar masses accurate enough for calibration purposes 
could be obtained. The key measurement is the determination of diffusion coeffi­
cients where it is necessary to keep the experimental error within ±2%. The accuracy 
of molar masses of polymer standards is known to be a limiting factor in the calibra-
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tion of GPC column sets and has been recently reconsidered as the ~ain limitation 
of the precision of the thermal field flow fractionation technique4 • 

Since QELSS is such a common technique, it should obviously be valuable to 
compare carefully the precision and accuracy of QELSS data with the results of 
classical diffusion experiments, the more so as one can find in the literature indica­
tions of an overestimation ofQELSS precision and also objections based on the poor 
reproducibility of data measured on the same sample in different laboratories. Let 
us note in this connection three different D ex:: M-rt. relations determined by QELSS 
(refs 5 -7) for standard polystyrenes in butanone. Using these relations we get for 
Mw = 5. 105 diffusion coefficients 3·55. 10- 7 , 3·43. 10- 7 and 2·96. 10- 7 , i.e., 
deviations of + 3· 5% and -13·7%. Comparing the cyclohexane data measured 
by King et al. 8 for standard polystyrenes with M w values 1·1 . 105 and 6·7 . lOS 
with the data of Han9 for the same samples we get the differences 1·7% and 6·7%, 
respectively. 

Still having access to the samples used in our classical measurements, we decided 
to perform such a comparative investigation to establish whether the precision and 
accuracy of QELSS data is sufficient for the new method to replace the classical 
difusion methods in the high precision determination of molar masses of standard 
polymers by the Svedberg formula. The aim of this study is to select carefully the 
experimental conditions and to evaluate the computational approach based on 
cumulants, in view of the experimental peculiarities and effects of the molar mass 
distributions. 

THEORETICAL 

In the case of a polydisperse polymer in solution the electric field autocorrelation 
function is10 

Ig(1)(r)I = J~ G(y) exp (-YT) dy, (1) 

where T is the delay time and y = K2 D is the decay rate, D being the diffusion 
coefficient. The scattering vector is K = (41tnj2) sin (8/2), where A. is the wavelength 
of light in vacuum, n is the solvent refractive index, and 8 is the scattering angle. 
The normalized distribution function of decay rates, G(y) dy, is defined as a z-fraction 
of the total intensity scattered by molecules having y within the increment dy, i.e., 
in terms of Zj arguments as the general statistical weightll G(y) dy = zJI)j = 
= cjMjj'LcjMj, Cj being the mass concentration. From this definition one directly 
obtains the relation between the distribution of decay rates relevant for the QELSS 
experiment and the mass-defined molar mass distribution f(M) dM, 

1 G(y) dy = - M f(M) dM, 
Mw 

(2) 
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which enters into the classical diffusion experiment through the mass defined distribu­
tion of diffusion coefficients g(D) dD, noting simply that f(M) dM = -g(D) dD, 
Mw being the mass-average molar mass. Clearly, the difference in the definitions of 
G(y) and g(D) results in a different average value of D determined by QELSS and 
by the classical diffusion. It will be shown below, however, that this difference does 
not exceed the experimental error in the case of extremely sharp polymer samples. 

The measured intensity autocorrelation function I(2)(r) in a homodyne experiment 
relates to the electric field autocorrelation function as lO 

(3) 

where Band C are constants. In the logarithmic form we get 

[
I(2)(r) ] 

In ~ - 1 = In const. + 21n Ig(1)fr)l. (4) 

For a monodisperse solution the homodyne autocorrelation function decays ex­
ponentially g(1)fr) = exp (-Y't') and Eq. (4) represents a straight line. 

In a polydisperse solution Eq. (1) may be analyzed by the method of cumulantsI2 ,13. 

00 

In Ig(I>('t')1 = L Km(Y)( -'t')mjm! , (5) 
m=1 

where Kl = Y = Jg> y G(y) dy = P,l' i.e., the 1st algebraic moment of G(y) and 
higher cumulants are expressed in terms of central moments of G(Y) as K2 = p'~, 
K3 = p'~, K4 = p'~ - 3p,;~, P,:" being defined by P,:" = Jg> G(y) (y - y)m d)'. Eq. (5) 
may be rewritten in the form 

(6) 

where R = p,;j2p,i, Q = J1;j6p,~, S = (p,~ - p,;2)j24p,i. In this way the polydispersity 
terms (deviation from the straight line) are compared to unity and may be calculated 
using some specific forms of the distribution function. In practice, higher terms are 
omitted due to the fact that the least squares polynomial fitting procedure used12 

to calculate the cumulants will never yield the higher terms with sufficient accuracy. 
For a given distribution the question then arises whether one can specify the condi­
tions under which a linear, quadratic or cubic approximation achieves the desired 
accuracy, in other words, over how many channels a straight line or a parabola 
adequately describes.In Ig(1)('t')I for a given degree and type of polydispersity. 

This can be shown on the basis of Eq. (6) assuming some specific forms of the 
molar mass distribution. The m th algebraic moment of G(y) is defined as 

(7) 
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Noting that 'l'(M) = K2 D(M) and 

D(M) = KoM- a , 

we get from Eq. (2) and Eq. (7) 

11m = (K2Ko)m foo M 1 - ma f(M) dM . 
Mw 0 

Using then the Schulz-Zimm distribution function 14 

ab + 1 

f(M) = Mb exp (-aM), 
reb + I) 

(a, b > 0) and performing the integration in Eq. (9), we get 

(K2Ko)m ama nb - miX + 2) 
11m = reb + 2) . 

For the Pearson distribution14 

we obtain similarly 

f(M) = 138
-

1 M-£ exp ( - filM) ne - 1) 

(K2KO)rn nmlX + e - 2) 
11m = ne _ 2) pma- . 

1811 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Since the arguments of the gamma functions in Eqs (11) and (13) must be positive, 
we see that e > 2 in Eq. (13). A more complex situation arises with regard to Eq. (11), 
where higher moments exist only if b - miX + 2 > O. The R-, Q-, and S- terms in 
Eq. (6) may then be calculated, if the central moments are expressed in terms of the 
algebraic moments: Il~ = 112 - Ili, 11; = 113 - 3112111 + 21li, 11; = 114 - 4113111 + 
121lzfl i- 31l~. 

It is seen after some algebra that R, Q, S depend solely on b, e, IX and on the cor­
responding gamma functions, and may be calculated for a given polydispersity index 
(Mw/Mn = 1 - lib in the case of the Schulz-Zimm function14 and Mw/Mn = 

= (e - 1)/(e - 2) in the case of the Pearson distribution) for a given solvent quality 
characterized by the value of IX. 

As soon as the coefficients R, Q, S are known, we can specify the conditions for 
the required precision of use of the single exponential (1st order cumulant fit) and/or 
a second order cumulant fit approximations. In this way, the problem of balancing 
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the statistical and systematic errors12 in cumulant expansion may be greatly simplified 
by using an error chosen a priori. We can use, similarly to our classical diffusion1, 

the requirement of a 2% error and calculate the (YT)max values as a function of the 
width of the molar. mass distribution, still compatible with this error for the first 
or second order cumulant fit. 

The corresponding simple conditions follow from Eq. (6): as a good approximation 
a linear condition for the single exponential fit 

R(jiT) ~ 0·02 , (14) 

and a quadratic condition for the second order cumulant fit 

0'02[1 - R(~r)] ~ Q(jiT)2 . (15) 

EXPERIMENTAL 

The standard polystyrene (Pressure Chern. Co., Sa) with Mw 498000 and a polydispersity index 
Mw/Mn < 1'06 was the same sample as that used in our previous classical diffusion work1 • 

Toluene (Merck, B.R.D.) was reagent grade. 
The fluorimeter cuvettes were thoroughly cleaned in nitric acid prior to use and then carefully 

washed with solvent filtered through a combined Presep silica cartridge (Tessek Ltd., Prague, 
Czechoslovakia) and Millex-SR O' 5 micron filter (Millipore Corp. Bedford, U.S.A.), a procedure 
which removes both particulate and dissolved polar contaminants. Solutions were prepared by 
weight, filtered in the same way, and fut into fluorimeter cuvettes. 

No special thermostating unit was used, but the room temperature (near to 25°C) was measured 
periodically and found to be fairly stable. 

The light scattering apparatus comprised a coherent Super-Graphite CR-4 argon-ion laser 
{Coherent Laser Division, Palo Alto, CA, U.S.A.), equipped with and intra-cavity etalon and 
tuned to 514'5 nm, a Hamamatsu R 268 photomultiplier tube (Hamamatsu Photonics K. K., 
Japan), an amplifier-discriminator supplied by Lindmark Innovation AB, Sweden and a 64 
channel Langley-Ford digital correlator (Langley-Ford Instruments, Amherst, MA, U.S.A.). 
The correia tor was connected to a JET 80G computer (Jet Computer AB, Sweden) foron-line 
data manipulation and analysis. The'optical components were mounted on a massive steel bench 
(Newport Research Corporation, CA 92708, U.S.A.). The laser beam was spatially filtered 
prior to focussing on the cuvette, and the scattered light was detected at an angle of 900 to the 
incident beam, after passing through a Glan-Thompson prism to remove any depolarized com­
ponent. Bursts of light, if caused by dust straying into the beam, were detected by a photon 
counter (Lindmark Innovation AB, Sweden) and usually by the correlator's overflow counter 
as well, although this was less reliable. The computer was programmed to perform cumulant 
analysis; in our implementation of the method a polynomial in T was fitted to the natural logarithm 
of the normalized photocurrent auto-correlation function (cf. Eqs (4), (5». The algorithm uses the 
Gauss-Jordan elimination to calculate the cumulants and provide estimates of their standard 
errors. A plot of residuals was also made, which quickly revealed any systematic departure of the 
generated curve from the experimental data. The baseline, B, may be calculated from the average 
photon counting rate, or derived from the average value of channels representing long times -
in our case, 8 channels delayed by 64 sample times. The two values should coincide in a correct 
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experiment but differ if slowly decaying processes are occurring in the solution. In particular, 
dust gives rise to components of the function with long correlation times, both through hetero­
dyning and through its slow motions. 

RESULTS AND DISCUSSION 

The dependence of the calculated reduced cumulant terms R, Q, S (Eq. (6)) on the 
width of molar mass distribution, expressed as M w/ M n = 1·1 - 11·0, is shown in 
Fig. 1 for both the Schulz-Zimm and Pearson distributions for toluene as the solvent l , 

C( = 0·57. With C( 0·5 and C( 0·67 we get an analogous picture with values of R, Q, S 
lower and higher, respectively. (Tables of calculated values are available on request.) 
Bearing in mind that the direct least squares polynomial fitting procedure, suggested 
as the best route12, is never reliable beyond the 4th degree, we can judge the interval 
of polydispersities where higher terms may be omitted from Fig. 1. We can see that 
the Q term becomes larger than R above Mw/Mn = 5 for the Schulz-Zimm distribu­
tion and for the Pearson curve all three R, Q, S approach unity at the same point. 
Thus, more than four terms are necessary to describe the polydispersity induced 
deviation of the experimental data from a single exponential fit for values of YT ~ 1, 
i.e., with channel numbers j ~ 28 for III = 2. 10- 6 in our experiments. We believe 
that the polydispersity interval for a reliable use of the cumulant fit does not go 
beyond Mw/Mn ,.., 3; accordingly, the other calculation procedures should be usedls 

above this value as well as for bimodal samples. A magnified part of Fig. 1 in this 
polydispersity interval, useful for a comparison of the R, Q terms with calculated 
K 2 , K3 values is shown in Fig. 2. The generally accepted view that a detailed shape 
of the distribution function is not essential in the case of low polydispersities holds 
also in the case of QELSS below Mw/Mn < 1·3. On the contrary, the use of the 
second cumulant (as K2/Ki) has little meaning for, say, Mw/Mn ,.., 2: We get the 
distribution width doubled for Schulz-Zimm in comparison to Pearson for the same 
value of the second cumulant. Let us note that there is one more difference in the 
QELSS behaviour of asymmetrical distribution. The more asymmetrical Pearson 
distribution gives much lower Q, S terms in comparison to the Schulz-Zimm for 
small polydispersities. The behaviour of the R term up to Mw/Mn = 3 for the three 
C( values used is shown in Fig. 3. This figure is used to find the initial guess of poly­
dispersity necessary for the determination of (YT)max according to conditions (14), 
(15) if no prior knowledge of Mw/Mn is available. We also see from Fig. 3 that 
solvents with low values of C( close to the E)-soivent should be preferred, if high preci­
sion of Dz (z-average) is required. 

The calculated conditions for the use of the single exponential approximation 
according to Eq. (14) and of the second cumulant approximation (Eq. (15)) are 
plotted in Figs 4, 5, respectively, for both distributions and the C( values chosen. 
In practice, the second cumulant fit (to prevent overfitting) is first applied to all 
experimental points to get an initial estimate of Mw/Mn (Fig. 3) and Dz · The (yr)max 
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FIG. 1 

The dependence of reduced cumulant terms 
R, Q, S on the width of molar mass distribu­
tion for the Schulz-Zimm (broken lines) and 
Pearson (solid lines) distributions (ae == O' 57) 
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FIG. 2 

The dependence of reduced cumulant term 
R, Q. S in the interval of Mw/Mn 1-3 for 
the Schulz-Zimm (broken lines) and Pearson 
(solid lines) distributions (a = 0'57) 

FIG. 3 

The dependence of reduced cumulant term 
R on the width of molar mass distribution 
described by Schulz-Zimm (broken lines) 
and Pearson (solid lines) functions for dif­
ferent ae values: 1 0'50; 2 0'57; 30'67 
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values are then found from Figs 4, 5 and used in the final calculation. It is clear 
that some knowledge about the sample is required 15, but this is usually fulfilled to 
some degree in cases where one is interested in a precise determination of Ms.D for 
calibration and/or other standardization purposes. 

Another important problem is the choice of the B value in Eq. (4). We do not 
believe, in agreement with ref. 16, that the use of a forced fitting with an adjustable 
baseline is a relevant procedure. In an ideal experiment the statistical baseline (cal­
culated by the correlator) B1 is certainly justified and, if the sampling time is cor­
rectly chosen, it should coincide with the last eight delayed channel value B2 • Thus, 
the difference between B1 and B2 , if any, should be used to check the deviation of the 
calculated Dz values, and this again should not exceed 2%. 

Five sets of experiments were measured, three in the region of very low concentra­
tions and two at a concentration of about 1 wt. %. 

1~ \ a 

""~" . ~ 
05~ 

3 

FIG. 4 

The dependence of calculated values of 
(y-r)mn on Mw/Mn for the 1st order (single 
exponential) approximation. Molar mass 
distributions accord}ng to Pearson (0) and 
Schulz-Zimm (b). Values of~: 1 0'5, 2 0'57, 
3 0'67 
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FIG. 5 

The dependence of calculated values of 
Cji~)rnax on MwlMn for the 2nd order 
cumulant approximation. Molar mass distri­
butions according to Pearson (0) and Schulz­
-Zimm (b). Values of~: 1 0'5, 2 0'57, 3 0'67 
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Three different sampling times, AT, were used and the maximum channel numbers, 
jrnax' were calculated from 

(16) 

using the (}iT )m8J< values from Figs 4, 5, taking a reasonable value of M wi Mn = 1·1 
for the sample used, and assuming the classical diffusion coefficient1 to be valid. 
We getjmAX 53, 21 and 10 for At. 106 equal to 2,5 and 10, respectively, as the condi­
tion for the 1st order fit whilst, in the case of the 2nd order approximation for the 
same AT. 106 jmAX equal to 197, 79 and 39, respectively. Both Bt and B2 baselines 
were used. 

The reproducibility of individual experiments is seen from summarized results, 
evaluated for the lst set in Table I. Using Bt (B2) all experiments yield values lying 
within 1'81% (4'92%) and 2'73% (2'93%) for the lst and 2nd order approximation, 
respectively. Thus, the precision of the average Dz value can be safely accepted to 
be within 2%. It is also apparent that the effect of the differences in B in Table I 
is not significant within the reproducibility of Dz• As predicted, in all experiments 
we get lower values from the 1st order approximation than with the second cumulant 
plot, where only a very small error of opposite sign is expected. The average values 
calculated as in Table I based on the statistical baseline Bt are presented in Table II 

TABLE I 

Results of calculation of D z according to the 1st and 2nd cumulant approximation for set 1. 
Conditions: c 0'0703 wt. %, average counting rate 107000 cis, 23·9°C. Symbols are defined 
in the text (Dz values in cm1 s - 1) 

Ist order 2nd order 

A:r A.B B1 B1 Bl B2 
106 s % Dz ·l07 Dz ·107 

Dz ·107 K21Kf Dz ·107 K2/Kf 

5 0'012 1'868 1-843 1'902 0'02 1'986 0'10 
10 0'004 1'875 1'838 1-924 0'03 2'028 0'13 
2 0'042 1-892 1·910 1·955 0'05 1'987 0'07 
2 0'045 1-878 1'897 1·933 0'05 1·983 0'08 
2 0'099 1-858 1·900 1'953 0'07 1·990 0'08 
2 0'101 1'887 1'932 1'947 0'05 1·969 0'04 
2 0'038 1-886 1·903 1·946 0'05 1·993 0'08 

Average 0'048 1'878 1'910 /'933 0'046 1-991 0'083 
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for all measured sets. Analogous calculations based on Bl gave results not significantly 
different within the reproducibility, exactly as in the case of the t st set. It follows 
from Table II that sets 1-3 behave in the same way; the scatter of Dz values is only 
slightly higher at the lowest concentration (set 3), the second cumulant fit gives 
reasonable values of Kl/Ki (noting that the error estimate of Kl/Ki is usually about 
± 30%) and the calculated deviation between the 1 st and 2nd order agrees well 
with the theoretical prediction. This comparison also allows an internal check to be 
made of the autocorrelation curve when a different number of channels is used in 
both approximations (M = 5 and 10. 10- 6 in this case). As a general feature of the 
dilute solutions studied, we can say that a single Lorentzian fit applies within 2-4%, 
and with this precision the polydispersity effect can be neglected. This is not the case 
of sets 4, 5, however; neither K2/Ki nor the differences between the 1st and the 
2nd order fit correspond to the expected value of 2%. It is not the aim of this paper 
to study QELSS in solutions close to the semidilute region; let us simply note that 
c* '" l' 5 g dl- 1 was determined 18 experimentally for approximately the same M w 

in toluene and Kl/Ki is known from the literatureI6 •19 ,lO to increase at higher con­
centrations. 

The final values of Dz corrected to 25°C are summarized in Table III together with 
the average differences in baselines and the Mw/Mn values calculated on the basis 
of Kl/Ki. Jamiesonl1 suggested that the baselines should differ by less than 0'1% 
in a reliable experiment; it follows from our data that the error of Dz resulting from 
such baseline uncertainty is then safely below 2%. 

For a comparison of the classical diffusion data with the QELSS results at the 
± 2% error level, additional inspection of the classical diffusion is needed. It is 

TABLE II 

Average results of calculation of Dz according to the 1st and 2nd cumulant approximation based 
on the statistical baseline: ADz difference of maximum and minimum value, .1 deviation of the 
1st order to the 2nd order 

1st order 2nd order 

Set 
~---- .1 

c Dz ·107 ADz Dz ·107 ADz Kl/KI % 
wt. % cm2 s- 1 % cm2 8- 1 % 

0'0703 1'878 1'81 1'933 2'73 0'046 -3'25 
2 0'0703 1'914 1'00 1·964 2'95 0'037 -2-54 
3 0·0211 1-852 3'40 1'935 9'51 0'052 -4,20 

4 1'037 2·911 3'20 3-369 7'83 0'108 -12'80 
5 1'037 2'852 6'80 3·355 7'63 0·112 -lNO 
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desirable to check whether the possible error in the classical D has a positive or 
a negative sign, 

The classical diffusion data22 are replotted in Fig. 6. The solid line is a polynomial 
fit to the data: D(c) = 2·0234 + 2'1546c - 0·293c2 • Below c 0·5 g dl- 1 we see that 
the scatter is slightly higher than ±2%. The value obtained by polynomial extrapola­
tion may be compared with the diffusion coefficient calculated from D = 3· 32 . 
. 10-4M.~g·57 using M •. D = 452000 as determined 1 previously. This relation 
D ~ M is certainly valid and, when used M •. D, "averages" the individual errors of 
s, D determinations. We get D = 1'98.10- 7 indicating (see Fig. 6) that the value 
calculated by the polynomial fit is overestimated by about 2%. Values of Dz cal­
culated for dilute solutions then agree quite well with the results of classical diffusion 
within the required accuracy. Let us note at this point that there is a difference in the 
definition of the average D values "seen" by both techniques; we will show in the 

TABLE III 

Summary of experimental data: c calculated from mass concentrations using density data17; 
Dz corrected to 2SoC, average values for both baselines; Mw/Mn apparent polydispersity index 
from Fig. 2 for the Schulz-Zimm distribution 

No. of c 
Set experimen ts g dl- 1 

1 7 0·0606 
2 4 0'0606 
3 6 0'0182 
4 5 0·8969 
5 6 0·8969 

g/dl 

llB Dz ·I07 

Mw/Mn % cm2 s-1 

0'048 1'995 1·25 
0'028 1·981 1·1 
0·017 1·987 1·2 
0·088 3-214 1·5 
0·076 3·294 1·33 

Flo. 6 

Comparison of QELSS diffusion coefficient 
with the value obtained by classical diffusion: 
• QELSS Dz , 0 classical diffusion data22, 

() calculated from D OC M relation! 
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next paper23 that Dz should be lower than the D-average from the Bryngdahl inter­
ferometer. The difference should not exceed 1% for Mw/Mn ,.., 1'1. 

The Dz values for the higher concentration do not agree with the results of classical 
diffusion; the error bar indicates the maximum scatter of individual determinations. 
There is no way to force the data to obtain D high enough; a forced baseline value 
(selected to decrease apparent polydispersity) still results in lower D and the 1st 
order fit still cannot be used. Thus, a difference of about 13% between gradient and 
QELSS diffusion must be accepted at this concentration, apart from other differences 
discussed above. 

The same five sets were measured also with unfiltered solutions. Although we do 
not present all data here, we believe that some practical consequences may be of 
interest. The data collected in dilute solutions showed a higher scatter, but should 
still be used to get reliable values of Dz , if some experiments with too different base­
lines and/or a negative second cumulant were omitted. Then value of K2/K~ and 
differences between 1 st and 2nd order fit were also reliable. In more concentrated 
solutions it was almost impossible to collect data with sufficiently small baseline 
difference. Moreover, this difference increased with the duration of the experiment. 
The difference in the baselines apparently reflects the presence of dust (cf. l1B in 
filtered solutions, sets 4, 5, Table III); the decrease in this difference with dilution 
in non-filtered solutions can be simply explained by the "dilution of dust" to a level 
where the influence of the rest of dust can be neglected, provided the duration of 
the experiment is not excessive. 

In conclusion, we state that the simplest way to obtain comparable diffusion 
constants from QELSS and classical diffusion within the requested accuracy is to 
adjust the sample concentration to a value where the effect of the concentration 
dependence of D can be neglected (in the same way as in our classical work1). Then 
no extrapolation to zero concentration is necessary, and also the influence of dust 
decreases substantially. 

This work is a part of an interinstitutional cooperation between the Institute of Macromolecular 
Chemistry. Prague and the Department of Physical Pharmaceutical Chemistry. Uppsala Biomedical 
Center under the auspices of the Royal Swedish Academy of Sciences and the Czechoslovak Academy 
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